Extensions 1→N→G→Q→1 with N=C4 and Q=C22×He3

Direct product G=N×Q with N=C4 and Q=C22×He3
dρLabelID
C22×C4×He3144C2^2xC4xHe3432,401

Semidirect products G=N:Q with N=C4 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×He3) = C2×D4×He3φ: C22×He3/C2×He3C2 ⊆ Aut C472C4:(C2^2xHe3)432,404

Non-split extensions G=N.Q with N=C4 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C4.1(C22×He3) = D8×He3φ: C22×He3/C2×He3C2 ⊆ Aut C4726C4.1(C2^2xHe3)432,216
C4.2(C22×He3) = SD16×He3φ: C22×He3/C2×He3C2 ⊆ Aut C4726C4.2(C2^2xHe3)432,219
C4.3(C22×He3) = Q16×He3φ: C22×He3/C2×He3C2 ⊆ Aut C41446C4.3(C2^2xHe3)432,222
C4.4(C22×He3) = C2×Q8×He3φ: C22×He3/C2×He3C2 ⊆ Aut C4144C4.4(C2^2xHe3)432,407
C4.5(C22×He3) = C2×C8×He3central extension (φ=1)144C4.5(C2^2xHe3)432,210
C4.6(C22×He3) = M4(2)×He3central extension (φ=1)726C4.6(C2^2xHe3)432,213
C4.7(C22×He3) = C4○D4×He3central extension (φ=1)726C4.7(C2^2xHe3)432,410

׿
×
𝔽